Tracking Clusters in Evolving Data Sets

نویسندگان

  • Daniel Barbará
  • Ping Chen
چکیده

As organizations accumulate data over time, the problem of tracking how patterns evolve becomes important. In this paper, we present an algorithm to track the evolution of cluster models in a stream of data. Our algorithm is based on the application of bounds derived using Chernoff’s inequality and makes use of a clustering algorithm that was previously developed by us, namely Practal Clustering, which uses self-similarity as the property to group points together. Experiments show that our tracking algorithm is efficient and effective in finding changes on the patterns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potentials of Evolving Linear Models in Tracking Control Design for Nonlinear Variable Structure Systems

Evolving models have found applications in many real world systems. In this paper, potentials of the Evolving Linear Models (ELMs) in tracking control design for nonlinear variable structure systems are introduced. At first, an ELM is introduced as a dynamic single input, single output (SISO) linear model whose parameters as well as dynamic orders of input and output signals can change through ...

متن کامل

Target Tracking Based on Virtual Grid in Wireless Sensor Networks

One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tr...

متن کامل

Robust Clustering for Tracking Noisy Evolving Data Streams

We present a new approach for tracking evolving and noisy data streams by estimating clusters based on density, while taking into account the possibility of the presence of an unknown amount of outliers, the emergence of new patterns, and the forgetting of old patterns. keywords: evolving data streams, robust clustering, dynamic clustering, stream clustering, scalable clustering

متن کامل

Phoneme Classification Using Temporal Tracking of Speech Clusters in Spectro-temporal Domain

This article presents a new feature extraction technique based on the temporal tracking of clusters in spectro-temporal features space. In the proposed method, auditory cortical outputs were clustered. The attributes of speech clusters were extracted as secondary features. However, the shape and position of speech clusters change during the time. The clusters temporally tracked and temporal tra...

متن کامل

TECNO-STREAMS: Tracking Evolving Clusters in Noisy Data Streams with a Scalable Immune System Learning Model

Artificial Immune System (AIS) models hold many promises in the field of unsupervised learning. However, existing models are not scalable, which makes them of limited use in data mining. We propose a new AIS based clustering approach (TECNO-STREAMS) that addresses the weaknesses of current AIS models. Compared to existing AIS based techniques, our approach exhibits superior learning abilities, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001